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Abstract

Prion diseases are rapidly progressive, incurable neurodegenerative dis-
orders caused by misfolded, aggregated proteins known as prions, which
are uniquely infectious. Remarkably, these infectious proteins have been
responsible for widespread disease epidemics, including kuru in humans,
bovine spongiform encephalopathy in cattle, and chronic wasting disease in
cervids, the latter of which has spread across North America and recently
appeared in Norway and Finland. The hallmark histopathological features
include widespread spongiform encephalopathy, neuronal loss, gliosis, and
deposits of variably sized aggregated prion protein, ranging from small, sol-
uble oligomers to long, thin, unbranched fibrils, depending on the disease.
Here, we explore recent advances in prion disease research, from the func-
tion of the cellular prion protein to the dysfunction triggering neurotoxicity,
as well as mechanisms underlying prion spread between cells. We also high-
light key findings that have revealed new therapeutic targets and consider
unanswered questions for future research.
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INTRODUCTION

Prion diseases are fatal neurodegenerative disorders of humans and animals and are remarkable
due to their infectious nature. The infectious agent causing prion disease, known as PrPSc, is
unusual as it lacks any specific nucleic acid; it is a pathogenic misfolded and aggregated form of
the cellular prion protein, PrPC (1, 2). Following transmission to a naive host, prions seed the
misfolding of host PrPC in an autocatalytic process, leading to an exponential increase in PrPSc

in the brain and spinal cord that eventually leads to neuronal death (3). The primary amino acid
sequence of PrPSc is determined by host PrPC, which in humans is encoded by the prion gene,
PRNP, on chromosome 20 (4).

Prions are highly stable and accumulate in the central nervous system over months to years,
eventually generating rampant spongiform degeneration and neuronal loss, as well as activated
astrocytes and microglia; there is a notable lack of peripheral inflammatory cells (Figure 1) (5).
Although the incubation period may be years, the clinical phase is typically rapidly progressive
(weeks to months) and may include behavioral abnormalities, motor dysfunction, cognitive im-
pairment, and ataxia, depending on the prion and the species affected (6). No therapy is available
beyond palliative care.

In humans, prion diseases are categorized as sporadic, genetic, or acquired, with the major-
ity of cases (∼85%) being sporadic. Sporadic Creutzfeldt–Jakob disease (sCJD) has no known
cause, but it has been hypothesized to be instigated by a somatic mutation in PRNP or the spon-
taneous conversion of PrPC to PrPSc (7). Genetic prion diseases have been classified by their
clinical symptoms and neuropathological features and consist of familial CJD, fatal familial in-
somnia, and Gerstmann–Sträussler–Scheinker disease. The mutations in PRNP are autosomal
dominant, highly penetrant, and consist of missense mutations, insertions, and deletions, usually
inciting disease onset in the fifth or sixth decade of life (6). The acquired prion diseases have been
transmitted between individuals (kuru and iatrogenic CJD) and from cattle to humans [variant

100 μm 100 μm

Hematoxylin
and eosin

PrP

Figure 1
Hematoxylin and eosin and PrP immunostain of brain (frontal cortex) from a patient with sporadic
Creutzfeldt–Jakob disease. Hematoxylin and eosin staining shows (left) spongiosis in the deep layers of the
cortex, and (right) the arrows indicate intraneuronal and parenchymal spongiform change. PrP immunostain
shows (left) synaptic, plaque-like, and perineuronal deposits of pathological prion protein, and (right) the
arrows indicate the plaque-like and perineuronal deposits. The synaptic deposits of pathological prion
protein are pronounced in the deep layers of the cortex. Scale bar = 100 μm.
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Creutzfeldt–Jakob disease (vCJD)] (8, 9). Iatrogenic spread has occurred from prion-contaminated
corneal and meningeal grafts, blood transfusions (10–13), human growth hormone (14, 15), and
prion-contaminated neurosurgical instruments and electrodes (16).

In addition to iatrogenic prion infection, prions have also precipitated large-scale, multispecies
epidemics and even spread as a zoonosis. Bovine spongiform encephalopathy (BSE) was first
described in 1986 (17), and within a decade, more than 180,000 cases of BSE were diagnosed
in cattle, with further expansion to zoo bovids, felids, and primates within the United Kingdom
(18). In 1996, vCJD was recognized to affect mainly young people (in their second decade) in the
United Kingdom, likely from exposure to BSE-contaminated beef (9, 19) in the United Kingdom
and elsewhere; 229 vCJD cases have been diagnosed to date (20). No recent cases have occurred;
however, secondary transmission of vCJD prions developed in transfusion recipients receiving
blood or blood products originating from prion-infected donors (10–13).

Although prion diseases in animals, including BSE, are largely acquired by ingestion, atypical
scrapie and BSE in aged sheep and cattle, respectively, may arise sporadically, similar to sCJD
(21–23). Classical scrapie affects sheep and goats nearly worldwide and has been recognized for
more than 250 years (24). Chronic wasting disease (CWD) was first discovered in Colorado deer
in 1967 (25) and affects free-ranging and captive deer, elk, reindeer, and moose (family, Cervidae)
in 25 US states and two Canadian provinces, as well as ranched elk in South Korea (26) and wild
reindeer and moose in Norway (27) and Finland (28). Transmissible mink encephalopathy has
been previously identified in farmed mink in the United States, Canada, Russia, Finland, and
Germany, and it was thought to be due to dietary exposure to a prion-infected animal, although
the origin of the epidemic remains unclear and no cases have been reported for more than 30 years
(29).

The complicated molecular mechanisms that govern how prions are converted and spread from
extraneural entry sites into the brain as well as how prions generate neurotoxic responses are the
subjects of this review, which focuses on recent findings in prion pathogenesis. We also highlight
new research linking prion conformation to disease phenotype.

CELLULAR BIOLOGY OF THE PRION PROTEIN: SYNTHESIS
AND FUNCTION

Prion Protein Synthesis and Modification

The physiological (or cellular) form of the prion protein is glycosylphosphatidylinositol (GPI) an-
chored and features two variably occupied N-linked glycosylation sites (30). Mature PrPC consists
of approximately 210 amino acids, arranged as a disordered N-terminal domain and a globular
C-terminal domain composed of three α helices and a short, antiparallel β pleated sheet (31). In
its mature form, PrPC is mainly present as a diglycosylated protein, located at the outer leaflet
of the plasma membrane in lipid-enriched microdomains (32). Following internalization, PrPC is
recycled to either the plasma membrane or the Golgi apparatus (the retromer pathway) (33) or is
transported to late endosomes, eventually residing in the pinched-off intraluminal vesicles within
multivesicular bodies (MVBs) for release as exosomes or for degradation in lysosomes (34, 35).

PrPC is subject to proteolytic cleavage, with α cleavage and shedding of PrPC representing
the two most important cleavage events (36). α cleavage occurs in the middle of PrPC, releasing
an unstructured N-terminal protein fragment, while leaving its C-terminal globular part attached
to the membrane (37). This cleavage takes place during vesicular trafficking of PrPC within the
secretory pathway (38). Initial reports identified the serine protease plasmin (39, 40) or ADAMs
(proteins belonging to the family known as a disintegrin and metalloproteinase) (41) as potential
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proteases, yet data within the past 5 years do not support this observation (42–44), and the exact
nature of the responsible protease remains unclear (36).

A cleavage event occurring at the distal C terminus of PrPC and releasing nearly full-length
PrP into the extracellular space is referred to as PrP shedding (45, 46). PrP shedding occurs only
on the plasma membrane, and ADAM10 is the only relevant PrP sheddase, with diglycosylated
PrPC representing the preferred substrate (47–49).

Prion Protein Function

A detailed explanation of all of the functions attributed to PrPC would go beyond the scope of this
review. In fact, one of our groups (M.G. and colleagues) proposed in 2017 that PrPC should be listed
among the expanding group of multifunctional proteins—that is, those proteins to which several
functions are attributed (36). An incomplete list of PrPC functions would include its role in neural
development (50), cell adhesion (51), axon guidance, synapse formation (52), neuroprotection
(53, 54), regulation of circadian rhythm (55), myelin maintenance (56, 57), maintenance of ion
homeostasis (58, 59), and signaling (60, 61).

Interestingly, some of the best described functions are not credited to PrPC in its membrane-
bound, GPI-anchored form, but rather to soluble PrPC fragments, which can be generated only
by regulated proteoloysis, such as α cleavage and shedding. This is true for the described function,
reported in 2010, of soluble PrP in maintaining myelin homeostasis (57) or in inducing neurite
outgrowth (62). For myelin maintenance, binding of the flexible N-terminal part of soluble PrP
acts as an agonistic ligand to a G protein–coupled receptor expressed on Schwann cells, Adgrg6
(Gpr126) (57), whereas the molecular details for the neurite outgrowth–promoting role are not
understood. Interestingly, in this instance, membrane-bound PrPC itself may act as a receptor
via homophilic interactions (62). Nevertheless, in both instances, it is obvious that regulated
proteolysis would be an elegant mode of functional regulation for transmitting information to
distant sites. This is reminiscent of functions attributed to proteolytic cleavage fragments from
the amyloid precursor protein (APP) (63, 64). Yet while insights into the processing of APP and its
biological and pathogenic consequences are vast, relatively little is known about the physiological
roles of PrPC cleavage fragments.

PRION PROTEIN MALFUNCTION: MECHANISMS OF
NEURODEGENERATION IN PRION DISEASE

Loss of PrPC Function Versus Toxic Gain of Function?

A key event in the pathophysiology of prion diseases is the PrPSc template-directed misfolding of
PrPC into a pathogenic, conformationally altered, β sheet–rich version of itself. This conversion
process lies at the root of the now widely accepted prion hypothesis, which states that the infectious
agent for prion diseases (the prion) is entirely made up of proteins and is devoid of specific nucleic
acids (65). Today, we know that a pathogenic, conformationally altered version of PrPC is a
key component of the infectious agent responsible for the transmission of prion diseases. This
disease-associated version of PrP is designated as PrPSc. Originally, only highly protease-resistant
forms were termed PrPSc, but it is now accepted that there are also pathogenic PrP conformers
that are mildly protease resistant, and since these versions are infectious, a biochemical definition
of protease resistance is not adequate (66). Thus, one has to include protease-sensitive disease-
associated PrP species in the pool of conformationally altered versions of PrP able to induce prion
disease. Currently, the term PrPSc is widely used to describe disease-associated PrP species, and for
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the sake of clarity, we use this term in this review when referring to pathogenic, conformationally
altered versions of PrP.

The PrPC to PrPSc conversion process involves a massive structural rearrangement of the
primarily α helical protein into a highly β sheet–rich structure (approximately 47% β sheet) (67).
The mechanism that underlies PrPC conversion into PrPSc remains unknown. One hypothesis is
that short segments of PrPSc interact with PrPC in a steric zipper, in which complementary amino
acid side chains from two β sheets are tightly interdigitated and effectively stabilize growing fibrils,
largely through hydrogen bonds (68, 69). Sequence differences within steric zipper segments have
been shown to block prion conversion between species (70, 71).

PrPC is converted to PrPSc on the plasma membrane or within the endocytic pathway. A study
by Greene and colleagues (34) suggests that prion conversion occurs primarily within MVBs
and not on the plasma membrane because preventing MVB maturation sharply reduces PrPSc

production.
The generation and progressive accumulation of PrPSc are of key importance for the devel-

opment of clinical prion disease, although there are rare instances, such as subclinical disease in
prion-infected mice, in which the presence of PrPSc does not lead to neurodegeneration (72). It
is conceivable that the partial loss of some of the physiological functions of PrPC may contribute
to prion-associated neurodegeneration. A key argument against loss of function playing a part in
prion disease is that the loss of PrPC function in PrP knockout mice does not lead to neuronal
death (73). However, we have only begun to understand how PrPC functions on a molecular level,
with PrPC or its proteolytic cleavage products acting as receptor or ligand, or both, most likely
in concert with many binding partners (74). Thus, a certainly recurring redundancy in this sys-
tem may compensate for loss-of-function phenotypes, and these may become apparent only once
additional stressors are active (36, 57).

Mechanisms Underlying Prion Toxicity

The evidence for the direct or indirect neurotoxicity of PrPSc is compelling, and there is no doubt
that cerebral accumulation of misfolded PrPSc has a key role in the pathophysiology of prion
diseases, but how does this happen?

Disturbed protein homeostasis in prion disease. Neuronal proteostasis, which is the inter-
play of protein synthesis (including correct protein folding, trafficking, and processing) and pro-
tein degradation, is essential for correct neuronal function (75). Disturbed proteostasis occurs
in prion disease at multiple levels. PrPSc disturbs the ubiquitin/proteasome system at early dis-
ease states, leading to impaired function of this protein degradation pathway and thus enhancing
the buildup of PrPSc (76). There is also mounting evidence that the buildup of PrPSc affects the
autophagy/lysosome pathway that is responsible for the degradation of aggregated proteins, al-
though in one study temporal analysis indicates that this is a consequence of protein buildup and
not causally involved in disease initiation (77). Additionally, there is evidence that exhaustion of
unfolded protein response pathways occurs early in prion disease (78–80). The unfolded protein
response is a cellular stress response aiming to protect the endoplasmic reticulum’s function in
protein synthesis and sorting. PrPSc stresses the endoplasmic reticulum and sets off a vicious cycle,
resulting in disturbed PrPC trafficking, impaired PrPC functions, and translational shutdown that
weakens the neurons, causing synaptic loss and, ultimately, inducing cell death pathways (81). In-
terestingly, restoring the disturbed protein translation has been shown to be neuroprotective (81).

PrPSc-mediated toxicity at the neuronal membrane. PrPSc aggregation occurs in a highly
ordered fashion, and oligomeric, rather than fibrillar, forms of PrPSc aggregates are thought to
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be more neurotoxic (82). Morphological studies have shown the close relationship between PrPSc

deposits and the neuronal plasma membrane (83). How this translates into neurotoxicity is not fully
understood, but two lines of thought have emerged. In the first scenario, PrPSc aggregates lead
to major membrane disturbance, possibly by corrupting the function of neuronal receptors, such
as the NMDA receptor, and thus altering plasma membrane permeability (84). GPI-anchored
PrPC is able to efficiently transduce neurotoxicity, and prion disease is accelerated in mice in
which PrPC shedding is impaired, and both of these support this line of thought (85, 86). In the
second scenario, membrane-bound PrPC itself may act as a receptor of prion toxicity. Indeed,
a direct interaction between PrPSc and PrPC induces neurotoxicity similar to a mechanism first
described in Alzheimer’s disease in which oligomeric species of amyloid β bind membrane PrPC

complexed to the metabotropic glutamate receptor mGluR5, activating intracellular Fyn kinase
and ultimately leading to synaptotoxicity (87–91).

PrPC has also been incriminated in neurotoxic responses, as antibody binding to the C-terminal
globular domain leads to toxic signal generation through the N terminus, inducing calpain acti-
vation and reactive oxygen species production (92). PrPSc has been found to cause a similar toxic
signaling cascade, again with calpain activation and reactive oxygen species generation (93). In cul-
tured primary neurons expressing a mutant PrP lacking residues in a central region (�105–125),
abnormal ion channel currents occurred, sensitizing neurons to glutamate-induced excitotoxicity.
These abnormal currents may represent early toxic signaling events in affected cells and underlie
early neurodegeneration (94). Nevertheless, the sequence of events leading to receptor-mediated
neurotoxicity is not yet completely defined, and GPI-anchored PrPC would need a coreceptor to
enable intraneuronal signal transduction.

PRION SPREAD INTO AND THROUGH THE CENTRAL
NERVOUS SYSTEM: AN UPDATE

Similar to neurotropic infectious agents such as rabies virus, prions have managed to access the
central nervous system (CNS) from extraneural entry sites. In experimental models, prions appear
to spread from site of entry to the CNS via peripheral nerves. For example, feeding prions to
hamsters leads to early prion deposition in enteric and autonomic ganglia, vagus and splanchnic
nerves, and, subsequently, in the thoracic spinal cord and dorsal motor nucleus of the vagus in the
brain stem, consistent with retrograde prion spread along autonomic peripheral nervous system
pathways into the CNS (95). Oral BSE prion infection in cattle and CWD in deer are first detected
in the CNS within the vagal nucleus, consistent with prion entry through the gastrointestinal
tract and transit via the vagal nerve into the brain (96, 97). Similarly, exposure of the mouse eye
to prions induces prion deposition along the optic nerve and tract, followed by the contralateral
superior colliculus to which it projects, further suggesting prion spread via neural circuitry (98).
Additional support for prion transit in nerves was provided by studies manipulating sympathetic
innervation to the prion-infected spleen, which markedly affected prion entry into the CNS (99,
100). Interestingly, prion conformation also plays a part in prion neuroinvasion, as fibril-forming
prions spread poorly to the brain compared with oligomeric or subfibrillar prions (101–104). Since
prions circulate in blood within minutes postinoculation (105), additional nonneural pathways of
prion entry into the CNS, such as passage across the blood–brain barrier, cannot be excluded.

Prion Spread from the Gastrointestinal Tract to the Brain

Prion spread following ingestion is similar to the pathway used by other infectious agents exploit-
ing entry portals to invade the host. Upon contact with the intestinal epithelium, prions transit
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via M cells, as M cell depletion reduces oral susceptibility to prion disease (106); additional studies
by multiple laboratories support M cells as key players that facilitate the passage of prions across
the mucosal barrier (106–110). Enteritis may heighten susceptibility to oral prion infection, po-
tentially by enabling prion passage through the mucosa (111). Once in the subepithelial region,
neurotropic prions, such as BSE, are thought to spread by retrograde axonal transport along auto-
nomic peripheral nervous system pathways into the brain stem (112, 113). Lymphotropic prions,
such as sheep scrapie, deer CWD, and potentially vCJD, rapidly spread (within hours) to Peyer’s
patches and draining lymph nodes, potentially transported by classical dendritic cells (96, 114,
115), as depletion of dendritic cells impedes the early replication of prions in lymph nodes (116,
117). Lymphotropic prions also spread to inflamed organs harboring lymphoid follicles, such as
kidney or mammary gland, leading to prion excretion or secretion into, respectively, urine or milk
(118–121).

In the lymphoid tissue, PrPSc accumulates within the germinal centers of lymphoid folli-
cles, both on the plasma membrane of follicular dendritic cells (FDCs) and within tingible body
macrophages (122), where it persists throughout the infection (96). FDCs trap antigens on their
plasma membrane for display to B cells (123, 124) and have proven highly capable of replicating
prions (125), sustaining lymphoid prion infections for months to years (125). On the surface of
FDCs, CD21/35 receptors are thought to bind a PrPSc complement complex, as both soluble
C1q and regulatory protein factor H bind PrPSc (126–129), and CD21/35 receptor knockout mice
show low attack rates after a peripheral prion infection (129). Together these studies indicate a
crucial role for complement receptors in lymphoid prion replication.

This peripheral phase of prion replication has been exploited to block prion spread to the
CNS. FDCs require B cell signaling through tumor necrosis factor and lymphotoxin to develop
and maintain a mature state (123), and blocking lymphotoxin signaling induces FDC dedifferen-
tiation and prevents prion accumulation in lymphoid tissue. This prevention strategy has worked
effectively in mice treated with lymphotoxin β receptor agonists or antireceptor antibodies (130),
abolishing splenic prion replication and prolonging survival following an intraperitoneal challenge
(130). Preventing disease by this strategy must begin early, however, as nerve entry occurs quickly
after prion exposure, within 14 days after oral challenge in mice (131).

Lymphoid tissues may serve as sources of new prion strains. Cross-species prion transmission
has generated new prion strains within lymphoid tissues, suggesting that these tissues may be
more promiscuous than the CNS in replicating prions having a different PrP sequence (132). The
mechanism underlying this reduced threshold for prion replication is unclear; however, PrPSc

glycan sialylation levels influence capture by complement receptors in lymphoid tissue, and the
glycans on PrPSc are more sialylated in lymphoid tissue than in brain (133), potentially contributing
to the permissiveness of lymphoid tissue to prion replication (133, 134).

Prion Conversion Within the Central Nervous System

Once within the brain and spinal cord, prions are further amplified by neurons and astrocytes.
Astrocytes are highly susceptible to prion infection in vitro and can readily transfer prions to
neurons (135, 136). However, microglia do not have a major role in replication, but instead are
critical for prion clearance: The depletion of microglia accelerates disease in vivo and increases
PrPSc accumulation in organotypic brain slices (137). In contrast, oligodendrocytes lack any known
significant contribution to prion replication or spread through the CNS (125). Although much
is known about the cells that replicate prions in the brain, a pressing research need is to better
understand how protein aggregates spread through the brain, from neuron to neuron (138–140)
and between neurons and astrocytes (141).
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Cell-to-Cell Prion Spread Through the Central Nervous System

Once in the brain, prions spread through neuroanatomically connected brain regions by poorly
understood mechanisms (142–145). In vitro, prions spread from cell to cell via (i) exosomes and
(ii) tunneling nanotubes (139, 146–148), with other as-yet-to-be-tested possible mechanisms,
including through synaptosomes, GPI painting, microvesicles, and PrPSc cleavage from the plasma
membrane (Figure 2).

PrPC and PrPSc were both shown to sort into MVBs for release within exosomes, 40–100 nm
extracellular vesicles (EVs) that arise within MVBs (34, 148–150). The extent to which prions
are released within exosomes varies depending on the prion strain, as certain strains traffic more
extensively with exosomes (146).

Further supporting the importance of EVs in prion transport, Saa and colleagues (151) showed
that vCJD prion-infected mice harbored EVs containing infectious prions in plasma starting at
preclinical disease stages, which suggests that EVs may transport prions across a long range.
Nevertheless, it is not yet clear whether exosomes or other EVs are the most relevant mechanism
for prion spread through the CNS. Methodological advances within the past 3 years in isolating
exosomes and other EVs from the brain are expected to shed light on the role of exosomes in
prion spread in vivo (152).

Another possible route for the direct cell-to-cell spread of prions is through tunneling nano-
tubes. Tunneling nanotubes are thin, membranous tubes that connect cells and serve as a mecha-
nism for cell-to-cell communication, as organelles including lysosomes and mitochondria can be
transported in nanotubes (140, 153). In addition to organelles, PrPSc was transferred to naive cells
via nanotubes, including transfers from primary dendritic cells to neurons, as well as from neuron
to neuron (139). Tunneling nanotubes may be induced by cell stress.

2

1

3

4

Prions

Figure 2
Possible pathways of prion spread from cell to cell. Prion aggregates may spread through� transport in
tunneling nanotubes;� glycosylphosphatidylinositol (GPI) painting, by which GPI-anchored proteins
transfer from one cell surface to a neighboring cell surface;� trafficking within exosomes; or� from
membrane budding and transport within vesicles.
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Lysosomes may also be involved in the cell-to-cell transport of prions, either through transfer
within tunneling nanotubes or through lysosomal exocytosis, as observed for amyloid β and α

synuclein (154, 155).

PrPSc CONFORMATION IMPACTS DISEASE PHENOTYPE

In experimental prion disease of rodents, a wide range of incubation periods and brain targets has
been reported (156), depending on the prion conformation, or strain. Much work has been done
to examine the relationship between the biochemical properties of PrPSc and survival time. Studies
of yeast prions (Sup35) indicated that the rate of prion propagation is inversely proportional to
aggregate stability and suggested that more fibril fragmentation, or higher frangibility, would
produce new free ends for prion formation and accelerate prion propagation (157). Consistent
with this notion, murine prion strains with shorter incubation periods typically have lower PrPSc

stability compared with that of strains with longer incubation periods (158–160). In contrast,
hamster prion strains with short incubation periods have relatively high PrPSc stability compared
with strains with long incubation periods (161, 162). Similar to the hamster prion model, patients
with sCJD who are accumulating stable PrPSc had a shorter, more rapidly progressive clinical
disease, potentially due to faster PrPC conversion (163, 164).

The protease-sensitive forms of PrPSc, sPrPSc, have been implicated in disease pathogenesis
(165), and factoring in these species may also help explain the above discrepancies in PrPSc stability
and incubation periods. The relative ratio of sPrPSc to proteinase K–resistant PrPSc is strain
specific, and evidence suggests that these small sPrPSc oligomers can influence the prion conversion
rate (166, 167). However, some groups have suggested that the abundance of sPrPSc does not exceed
10% of the total amount of PrPSc and, therefore, they downplay the relative contributions of these
species to disease (168). Overall, the relationship between the biochemical properties of PrPSc and
the outcome of disease is still poorly understood. This may be due, in part, to the many other
factors that contribute to the incubation period of disease in vivo, including the various clearance
mechanisms. The use of protein misfolding cyclic amplification (PMCA), which recapitulates
prion conversion in vitro (169), continues to provide useful information on factors that influence
the rate of PrPSc formation.

PrPC is the major host factor that controls the tempo of prion formation. Genetic ablation
of Prnp renders animals resistant to prion infection and agent replication (170–173). Conversely,
increasing PrPC expression results in a reduction in the incubation period (174, 175). Consistent
with these in vivo studies, in vitro experiments have shown that the abundance of PrPC positively
correlates with conversion efficiency (176). Interestingly, in 2014, Mays and colleagues (44) re-
ported that as prion disease progresses, the PrPC level is reduced. The reduction in PrPC levels
may contribute to a decline in the rate of prion conversion or slow the onset of neurodegenera-
tion, or both (177). Additional PrPC factors that influence conversion include the posttranslational
modifications of PrPC. Specifically, the sialylation status of the N-linked glycans impacts prion
conversion in a strain-dependent manner (178). Consistent with this observation, removal of
sialylation can increase the efficiency of prion formation (134, 179).

Host cellular cofactors also influence the rate of prion formation. Removal of RNA signif-
icantly reduced PrPSc formation, whereas RNA supplementation restored PrPSc formation in
a PMCA reaction (180). Interestingly, the extent of reduction induced by RNA depletion was
strain dependent, as was the composition of nucleic acid that restored PrPSc formation (181).
Phosphatidylethanolamine (PE) also supported the formation of both mouse and hamster PrPSc

in vitro (182). Importantly, PMCA conversion of three separate prion strains with PE as a cofactor
resulted in the three strains converging into a single strain (182). Recent evidence suggests that
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PrPC PrPSc PrPC [PrPSc]N+

Co

[PrPSc]1/N

[PrPSc]1/N
+

Sporadic or genetic

Acquired

1
2

1

3 4

5

6

Co
2

Figure 3
Strain-specific factors in prion formation.� Prion formation depends on the presence of PrPC.� For the
conversion of PrPC to PrPSc in sporadic, genetic, or acquired etiologies, cofactors (Co) may participate in
the formation of PrPSc, although it is unknown whether they are incorporated into the growing polymer or
simply used as a structural scaffold.� The rate of PrPSc formation is dictated by the incoming prion strain
(PrPSc), the level of PrPC (�), and the cofactors present (�).� PrPSc fragmentation can result in newly
fragmented PrPSc serving as� a seed for conversion or� PrPSc clearance from the cell. The rate of prion
formation (�) must be greater than the rate of clearance (�) to establish a productive infection.
Strain-specific PrPSc conformations may utilize specific subpopulations of PrPC, cofactors, and clearance
mechanisms, and all of these may contribute to strain-specific cellular and tissue tropism.

strain-specific cofactors may not be the only mechanisms responsible for prion tissue tropism. For
example, if the relative rate of PrPSc clearance exceeds PrPSc formation, infection is not established
(183). Overall, the distribution of convertible PrPC and host cellular cofactors, in combination
with the relative rates of prion formation and clearance, may influence the strain-specific pace and
tropism of disease (Figure 3).

MULTIPLE PRION STRAINS CAN COEXIST IN A HOST

Multiple prion subtypes are commonly found to coexist in patients with sCJD (184), and interest-
ingly, the subtypes have different rates of PrPSc formation in vitro (185). The relative percentage
of sCJD cases that contain both PrPSc subtypes has not been agreed upon (186–188). Differences
in estimates of the co-occurrence of PrPSc subtypes may be explained by incomplete proteinase K
digestion of PrPSc that allows for an overestimation (189) or by the sampling of a limited number
of brain regions or employing a limited number of anti-PrP antibodies, which may lead to an
underestimation. Overall, it is clear that in human prion disease, mixtures of prion subtypes occur.
The effects of these subtype mixtures on disease development and transmission in natural cases of
prion disease are unclear.

Prion strains can interfere with conversion when mixtures of them are present. Prion strain
interference occurs when a slowly replicating (long incubation period) strain interferes with the
replication of a relatively quickly replicating (shorter incubation period) strain. The relative onset
of replication of the blocking and superinfecting strains dictates the outcome of strain emergence
(190). Consistent with this observation, replication of the blocking strain is required for strain
interference to occur (191, 192). Interestingly, in animals infected with two strains under condi-
tions in which strain interference does not occur, PrPSc levels of both strains are altered (193).
This is consistent with the hypothesis that prions have the properties of quasispecies, which are
considered to be populations of similar, but not identical, conformations of PrPSc (194). Altering
the prion conversion environment in vitro can also alter the strain’s properties (195–198), and
the selection of drug-resistant prions that revert to a drug-sensitive phenotype once the drug is

506 Sigurdson · Bartz · Glatzel

A
nn

u.
 R

ev
. P

at
ho

l. 
M

ec
h.

 D
is

. 2
01

9.
14

:4
97

-5
16

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
L

a 
T

ro
be

 U
ni

ve
rs

ity
 o

n 
10

/0
7/

19
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



PM14CH20_Sigurdson ARI 10 December 2018 11:54

removed is consistent with this hypothesis (195). Overall, prion strains are highly dynamic mix-
tures regardless of their incubation periods or the clinical outcome of the disease, and this must
be considered when developing therapies that may target specific prion conformations.

THERAPEUTIC IMPLICATIONS

Prions cause toxicity in the CNS, and yet the underlying mechanisms remain incompletely defined.
Neuronal PrPC is part of a key pathway inciting neurodegeneration, as demonstrated by an elegant
study from Mallucci and colleagues (199) showing that depleting neuronal PrPC in transgenic
mice 8 weeks postinoculation reverses early spongiform degeneration and the progression to
clinical scrapie. Such remarkable findings, together with a rich body of research that indicates a
requirement for PrPC in prion-induced neurodegeneration, indicate that reducing PrPC expression
may be a key therapeutic intervention.

Prion activation of the unfolded protein response leads to a decrease in protein translation that
is associated with synaptic failure and neuronal loss in mice with prion disease (81), and restoring
protein translation is neuroprotective (81). Thus, as a second possible therapy, pharmacological
restoration of protein translation may aid neuronal survival (200). Additional potential therapeutic
strategies may rely on increasing the clearance of prion aggregates, blocking the cell-to-cell spread
of prions, and directly inhibiting prion conversion using mutated full-length or peptide fragments
of PrPC that bind PrPSc and block fibril growth.

FUTURE DIRECTIONS

Although much has been discovered in recent years about the mechanisms of prion conversion,
transmission, and pathogenesis, basic structural and mechanistic questions about prion diseases
remain unresolved. How are the multiple functions of PrPC executed, and how do PrPC proteolytic
cleavage products contribute to the purported functions? What is the structure of PrPSc, and how
do PrPSc molecules from different strains vary in structure? How does the structure of PrPSc impact
neural cell targeting and neuronal toxicity? What are the pathways of prion-induced neuronal
toxicity? How do prions spread through the brain? What are the major prion clearance pathways?
Prion disease investigation has led the way in dementia research, and answers to the questions
raised here are within reach. Answers to these basic questions will enable the rational design of
new therapeutic strategies.
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